THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

ДОКЛАД ПРЕДСТАВЛЕН Эймсом М. В. мл. (Milton В. Ames, Jr.) Введение История аэронавтики и астронавтики показала, что определение главных направлений или национальных целей оказывает большое влияние на развитие техники. Поскольку так уже бывало в прошлом, то я предполагаю, что так же будет обстоять дело и в 2000 г. Так как для анализа современной техники требуется системный подход, я полагаю, что в космических исследованиях будущего разные проблемы проектирования будут рассматриваться в более тесной связи с проектом в целом, а также с проблемами развития и функционирования, и вследствие этого задачи, решаемые на стыке разных наук, будут приобретать все большее значение. Задачи практического конструирования вызовут к жизни новые формы летательных аппаратов и потребуют разработки новых материалов, которые в свою очередь создадут новые проблемы и выявят много интересных аспектов старых проблем как в области фундаментальных, так и в области прикладных исследований. Материалы Основу развития техники составляют знания о свойствах материалов. Во всех космических аппаратах используются разнообразные материалы в самых различных условиях. В последние несколько лет резко возросло количество изучаемых материалов и представляющих для нас интерес характеристик. Быстрый рост количества технических материалов, используемых при создании космических кораблей, а также возрастающая взаимозависимость конструкций космических кораблей и свойств материалов иллюстрируются табл. 1. В 1953 г. алюминий, магний, титан, сталь и специальные сплавы представляли интерес в первую очередь как авиационные материалы. Пять лет спустя, в 1958 г., они получили широкое применение в ракетостроении. В 1963 г. каждая из указанных групп материалов включала уже сотни комбинаций элементов или составных частей, а количество представляющих интерес материалов увеличилось на несколько тысяч. В настоящее время почти везде нужны новые и усовершенствованные материалы, и вряд ли положение изменится в будущем.

Таблица 1

Материалы, используемые в конструкциях космических аппаратов

Материал 1953 г. 1958 г. 1963г.
Бериллий +
Материалы,обеспечивающие регулирование теплового режима +
Термоэлектрические материалы +
Фотоэлектрические материалы +
Защитные покрытия +
Керамика +
Материалы, армированные нитями +
Уносимые покрытия (абляционные материалы) +
Слоистые материалы + +
Полимеры + +
Тугоплавкие металлы + +
Специальные сплавы + + +
Стали + + +
Титановые сплавы + + +
Магниевые сплавы + + +
Алюминиевые сплавы + + +
Потребность в новых знаниях в области материаловедения и технологии материалов находит отклик в наших университетах, частных компаниях, независимых исследовательских организациях и различных правительственных органах. Табл.2 дает некоторое представление о характере и масштабах исследований, проводимых НАСА в области разработки новых материалов. Эти работы включают как фундаментальные, так и прикладные исследования. Наибольшие усилия сосредоточены в области фундаментальных исследований по физике твердого тела и химии. Здесь представляют интерес атомное строение материи, межатомные силовые взаимодействия, движение атомов и особенно влияние дефектов, соизмеримых с размерами атомов.

Таблица 2

Программа исследования материалов

Физика и химия материалов Атомная и электронная структура, термодинамика и кинетика
Конструкционные материалы Материалы с большой удельной прочностью
Теплостойкие сплавы
Керамика
Полимеры
Материалы для сверхзвуковой транспортной авиации
Материалы, используемые в электронике Сверхпроводники и лазеры
Полупроводники
Термоэлектронные материалы
Исследования по применению материалов Разрушение в космическом пространстве
Лунные ресурсы
К следующей категории относятся конструкционные материалы с большой удельной прочностью, как титан, алюминий и бериллий, теплостойкие и тугоплавкие сплавы, керамика и полимеры. К особой группе следует отнести материалы для сверхзвуковой транспортной авиации. В программе НАСА постоянно возрастает интерес к категории материалов, используемых в электронике. Ведутся исследования сверхпроводников и лазеров. В группе полупроводников изучаются как органические, так и неорганические материалы. Ведутся также исследования в области термоэлектроники. И наконец, программа исследования материалов завершается рассмотрением с весьма общих позиций вопросов практического использования материалов. Чтобы показать потенциальные возможности применения результатов исследования материалов в будущем, я остановлюсь на исследованиях, связанных с изучением влияния пространственного расположения атомов на фрикционные свойства металлов. Если бы удалось уменьшить трение между соприкасающимися металлическими поверхностями, то это позволило бы усовершенствовать практически все типы механизмов с подвижными частями. В большинстве случаев трение между соприкасающимися поверхностями велико, и чтобы его снизить, применяется смазка. Однако понимание механизма трения между несмазанными поверхностями также представляет большой интерес. На фиг.1 представлены некоторые результаты исследований, проведенных в Льюисском исследовательском центре. Эксперименты проводились в условиях глубокого вакуума, так как атмосферные газы загрязняют поверхности и резко изменяют их фрикционные свойства. Первый важный вывод состоит в том, что фрикционные характеристики чистых металлов в сильной степени зависят от их естественной атомной структуры (см. левую часть фиг.1). При затвердевании металлов атомы одних образуют гексагональную пространственную решетку, а атомы других - кубическую. Было показано, что металлы с гексагональной решеткой обладают гораздо меньшим трением, чем металлы с кубической решеткой.

Затем был исследован ряд металлов, атомы которых расположены в вершинах шестигранных призм с разными расстояниями между их основаниями. Исследования показали, что трение уменьшается с увеличением высоты призм (см. центральную часть фиг.1). Наименьшим трением обладают металлы с максимальным отношением расстояния между основаниями призм к расстоянию между боковыми гранями. Этот экспериментальный результат согласуется с выводами теории деформации металлов. На следующем этапе в качестве объекта исследования был выбран титан, о котором известно, что он имеет гексагональную структуру и плохие фрикционные характеристики. Чтобы улучшить фрикционные характеристики титана, стали исследовать его сплавы с другими металлами, присутствие которых должно было увеличить размеры атомных решеток. Как и ожидалось, с увеличением расстояния между основаниями призм трение резко уменьшилось (см. правую часть фиг.1). В настоящее время проводятся дополнительные эксперименты по дальнейшему улучшению свойств титановых сплавов. Например, мы можем "упорядочить" сплав, т.е. с помощью термообработки расположить атомы разных элементов более подходящим образом и исследовать, как это повлияет на трение. Новые достижения в этой области повысят надежность машин, имеющих вращающиеся части, и, по-видимому, откроют широкие возможности в будущем. Хотя может создаться впечатление, что в последнее время мы достигли больших успехов в разработке теплостойких материалов, прогресс в исследовании космического пространства в следующие 35 лет будет тесно связан с разработкой новых материалов, которые могли бы работать при высоких температурах в течение многих часов, а в некоторых случаях и лет. На фиг.2 показано, как это важно. По оси ординат здесь отложено время работы в часах, а по оси абсцисс - рабочая температура в градусах Цельсия. В заштрихованной области от 1100 до 3300°С единственными металлическими материалами, которые можно использовать, являются тугоплавкие металлы. На оси ординат горизонтальной чертой отмечена продолжительность работы, равная одному году. Область рабочих параметров ядерного ракетного двигателя ограничена температурами от 2100 до 3200° С и продолжительностью работы от 15 мин до 6 час. (Эти цифры являются весьма приближенными и приводятся только для ориентировочного определения границ области рабочих параметров.) Область с надписью "гиперзвуковые самолеты" характеризует условия работы материалов обшивки. Здесь требуется гораздо большая продолжительность работы. Для космических аппаратов многократного использования называют времена работы всего от 60 до 80 час, однако на самом деле может потребоваться продолжительность работы порядка тысяч часов в интервале температур от 1320 до 1650° С и более. По фиг.2 можно судить о значении тугоплавких металлов для решения задач, которые ставит программа исследования космического пространства. Некоторые из этих материалов уже применяются, и я уверен, что они будут усовершенствованы и приобретут с течением времени еще большее значение. Иногда можно услышать, что современная технология материалов на самом деле не наука, а скорее высокоразвитое искусство. Возможно, это отчасти и так, но я уверен, что материаловедение и технология материалов уже достигли весьма высокого уровня развития и сыграют большую роль в жизни нашей страны на рубеже 2000 г. Конструкции космических аппаратов Обратимся теперь к вопросам конструирования космических аппаратов. На фиг.3 указаны основные конструктивные проблемы, возникающие при проектировании современных ракет-носителей и космических летательных аппаратов. К ним относятся: нагрузки, действующие на конструкцию, динамика и механика полета; разработка конструкций, выдерживающих большие тепловые нагрузки; защита от воздействия условий космического пространства, а также разработка новых конструкций и комбинаций материалов для применения в будущем.

Разработка конструкций космических аппаратов находится еще на ранней стадии развития и базируется на опыте конструирования самолетов и баллистических ракет. Из фиг.4 следует, что большие современные ракеты-носители во многом родственны баллистическим ракетам. К отличительным особенностям их конфигураций следует отнести большое удлинение, снижающее сопротивление атмосферы, и большой объем, занимаемый топливом. Вес топлива может составлять от 85 до 90% стартового веса ракеты-носителя. Удельный вес конструкции очень мал, так что по существу это тонкостенная гибкая оболочка. При сегодняшней высокой стоимости единицы веса полезной нагрузки, выведенной на орбиту или траекторию полета к Луне и планетам, особо выгодно уменьшение веса основной конструкции до допустимого минимума. Еще более остро встают проблемы конструирования в случае использования в качестве топливных компонентов жидких водорода и кислорода, имеющих малый удельный вес, вследствие чего возникает потребность в больших объемах для размещения топлива.

Конструктор будущих ракет-носителей столкнется с многими новыми сложными проблемами. Ракеты-носители, по всей вероятности, будут больших размеров, станут сложней и дороже. Для многократного их использования без больших затрат на обратную доставку или ремонт потребуется решить важные задачи конструирования и технологии материалов. Необычные требования, предъявляемые к разным типам космических аппаратов будущего, уже активизировали поиски новых типов конструкций и производственных процессов. Требования защиты от опасностей, ожидающих нас в космическом пространстве, таких, как метеориты, жесткое и тепловое излучение, в значительной мере активизируют исследования, проводимые с целью создания конструкций космических аппаратов. Например, при длительном хранении жидкого водорода и других криогенных жидкостей в условиях космического пространства утечка компонентов топлива через дренажную систему и метеоритные пробоины в топливных баках должна быть практически исключена. Значительные успехи достигнуты в области разработки изоляционных материалов, обладающих исключительно малой теплопроводностью. Сейчас можно обеспечить хранение топлива в течение времени нахождения на стартовой площадке и нескольких оборотов вокруг Земли. Однако при длительном хранении в условиях космического пространства сроком до одного года возникает очень сложная проблема, связанная с притоком тепла через элементы конструкции баков и трубопроводы. В ближайшие годы решению этой проблемы должно быть уделено большое внимание. Другие проблемы космического полета, такие, как проблема складывающихся больших космических аппаратов или их частей в процессе вывода на орбиту с последующей их сборкой в космическом пространстве, также потребуют новых конструктивных решений. В то же время в течение космического полета на космический аппарат не воздействуют ни гравитационные, ни аэродинамические силы, что расширяет область возможных решений при проектировании. На фиг.5 показан пример необычного конструктивного решения, возможного только в условиях космического пространства. Это один из вариантов орбитального радиотелескопа, имеющего гораздо большие размеры, чем те, которые можно было бы обеспечить на Земле. Такие устройства нужны для изучения естественного радиоизлучения звезд, галактик и других небесных объектов. Одна из полос радиочастот, представляющих интерес для астрономов, лежит в диапазоне от 10 Мгц и ниже. Радиоволны с такой частотой не проходят через земную ионосферу. Для приема низкочастотного радиоизлучения необходимы орбитальные антенны чрезвычайно больших размеров. В левой части фиг.5 показана кривая зависимости диаметра антенны от частоты принимаемого излучения. Видно, что с уменьшением частоты диаметр антенны увеличивается и для приема радиоволн с частотой менее 10 Мгц нужны антенны диаметром более 1,5 км.

Антенну таких размеров нельзя вывести на орбиту, да и ее вес при использовании обычных принципов проектирования намного превысит возможности самых больших ракет-носителей. Даже с учетом отсутствия силы тяжести проектирование таких антенн представляет большие трудности. Например, если сделать рефлектор антенны сплошным из алюминиевой фольги толщиной всего 0,038 мм, то и тогда вес материала поверхности при диаметре антенны 1,6 км будет составлять 214 т. К счастью, благодаря малой частоте принимаемого радиоизлучения поверхность антенны можно сделать решетчатой. Последние достижения в области больших ажурных конструкций позволяют выполнить решетку из тонких нитей. При этом материал, образующий поверхность антенны, будет весить от 90 до 140 кг. Такая конструкция позволит вывести антенну на орбиту и затем собрать ее. Одновременно можно обеспечить плотную упаковку антенны вместе с системами стабилизации и энергообеспечения. Жесткое излучение в космическом пространстве по-прежнему будет главным разрушительным фактором для запускаемых в космос аппаратов. Это разрушение связано отчасти с бомбардировкой космических аппаратов протонами больших энергий в радиационных поясах, а также с солнечными вспышками. Исследование эффектов, возникающих при такой бомбардировке, указывает на необходимость изучения сущности механизмов разрушения и определения характеристик материалов, используемых в качестве защитных экранов.


1 - сверхпроводящие катушки; 2 - магнитное поле; 3 - положительный заряд космического аппарата; 4 - поглощающий экран; 5 -плазменная защита.

Разработка новых способов защиты должна включать также исследование возможности экранирования с помощью сверхпроводящих магнитов, что позволит существенно снизить вес защитных устройств и тем самым увеличить полезную нагрузку космических аппаратов, предназначенных для длительных полетов. На фиг.6 иллюстрируется эта новая идея, получившая название плазменной защиты. Для отклонения заряженных частиц, таких, как протоны и электроны, используется комбинация магнитного и электростатического полей. Основой плазменной защиты является образуемое сравнительно легкими сверхпроводящими катушками магнитное поле, которое окружает весь аппарат. На тороидальных космических станциях экипаж и аппаратура располагаются в зоне малой напряженности магнитного поля. Космический аппарат заряжается положительно благодаря инжекции электронов в окружающее магнитное поле. Эти электроны несут отрицательный заряд, равный по величине положительному заряду космического аппарата. Несущие положительный заряд протоны из окружающего аппарат космического пространства будут отталкиваться положительным зарядом аппарата. Электроны, движущиеся в окружающем аппарат пространстве, могли бы разрядить электростатическое поле, однако этому препятствует магнитное поле, искривляющее их траектории. Зависимость веса таких защитных систем от объема космического аппарата графически представлена в нижней части фиг.6. Для сравнения приведены соответствующие веса защитного экрана, представляющего собой слой материала на пути излучения. Так как для управления движением потока электронов требуется магнитное поле весьма умеренной напряженности, то вес плазменной защиты в типичных случаях составит около 1/20 веса обычного поглощающего экрана. Хотя идея плазменной защиты является многообещающей, с ее работой в условиях космического пространства связано еще много неясного. В связи с этим в настоящее время ведутся теоретические и экспериментальные исследования возможной неустойчивости электронного облака или взаимодействия с пылью и космической плазмой. Пока что не обнаружено никаких принципиальных трудностей, и можно надеяться, что космической радиации можно будет противопоставить плазменную защиту, весовые характеристики которой будут значительно лучше, чем у других типов защиты. Вход в атмосферу Обратимся теперь к проблеме входа космических аппаратов в атмосферу Земли и других планет. Основную трудность здесь, безусловно, представляет защита от тепловых потоков, возникающих в процессе входа в атмосферу. Колоссальная кинетическая энергия космического аппарата должна быть преобразована в другие виды энергии, в основном в механическую и тепловую, так как в противном случае аппарат либо сгорит, либо получит повреждения. Скорости входа космических аппаратов будущего будут составлять от 7,6 до 18,3 км/сек. При меньших скоростях основную часть теплового потока составляет конвективный тепловой поток, однако при скоростях выше ~ 12,2 км/сек большую роль начинает играть тепловой поток излучения от головной ударной волны. Современные теплозащитные материалы эффективны до скоростей ~ 11 км/сек на аппаратах, имеющих малое аэродинамическое качество, однако при скоростях входа от 15,2 до 18,3 км/сек потребуются новые материалы. Фиг.7 помогает понять, почему в будущем для решения задач входа в атмосферу пилотируемых космических кораблей большой интерес представят аппараты, способные развивать значительную подъемную силу. По оси ординат отложено отношение подъемной силы к силе лобового сопротивления L/D (аэродинамическое качество) при гиперзвуковых скоростях, а по оси абсцисс - скорость входа. Первые признаки тенденции увеличения аэродинамического качества видны на примере космических кораблей "Меркурий", "Джемини" и "Аполлон". Ожидается, что в будущем орбитальные полеты вокруг Земли достигнут высоты синхронных орбит. Корабли, входящие в земную атмосферу из этой области космического пространства, будут иметь скорости до 10,4 км/сек (на фиг. 7 вертикальная линия с надписью "Синхронные орбиты"). Скорости входа пилотируемых космических кораблей, возвращающихся с других планет, например с Марса, гораздо больше. При надлежащем выборе времени старта и использовании притяжения Венеры они достигают 12,2 - 13,7 км/сек, в то время как при непосредственном возвращении с Марса скорости превышают 15,2 км/сек. Интерес к таким большим скоростям входа связан с большей гибкостью способа непосредственного возвращения с планеты.

Для поддержания в разумных пределах перегрузок, испытываемых экипажем корабля при столь больших скоростях входа, необходимо увеличение аэродинамической подъемной силы по сравнению с кораблем "Аполлон". Кроме того, увеличение подъемной силы (правильней сказать, аэродинамического качества L/D) при больших скоростях расширит допустимые коридоры входа, которые для баллистических спускаемых аппаратов сужаются до нуля. С увеличением подъемной силы возрастает также точность маневрирования и приземления. Одна из важнейших фаз полета космических кораблей, обладающих подъемной силой, - заход на посадку и сама посадка. Летные характеристики космических аппаратов с подъемной силой на малых скоростях так сильно отличаются от характеристик обычных самолетов, что для их исследования пришлось построить два летательных аппарата, показанных на фиг.8. Верхний аппарат имеет индекс HL-10 , а нижний M2-F2.

Эти аппараты предполагается поднимать на высоту около 14 км с помощью самолетов В-52 и сбрасывать при скоростях полета, соответствующих числу Маха до 0,8. На аппаратах HL-10 и M2-F2 установлены небольшие ракетные двигатели, работающие на перекиси водорода, которые позволяют моделировать переменное аэродинамическое качество. С помощью этих двигателей можно варьировать угол наклона траектории при заходе на посадку, а также запас статической устойчивости, чтобы определить оптимальные летные характеристики будущих пилотируемых космических кораблей аналогичной конфигурации. Корабли такой формы будут иметь вес, близкий к весу космических кораблей будущего. В настоящее время они оборудуются приборами, проходят наземные испытания и готовятся к летным испытаниям. Заключительные замечания Я пытался дать краткий обзор последних достижений в области разработки новых материалов, конструкций и техники входа космических аппаратов в атмосферу. Это позволило указать некоторые направления будущих исследований. Поскольку наша программа исследования космического пространства существует менее десяти лет, тo можно лишь гадать о том, какие достижения принесут с собой следующие 35 лет. В любом случае ясно, что решение проблем будущего потребует больших усилий. Поэтому наиболее важным, по-видимому, является вопрос о том, как лучше взяться за эту работу.

Начальник сектора перспективных исследований НАСА.

В мае 1970 г. осуществлены первые экспериментальные полеты летательных аппаратов HL-10 (Interavia № 7007, р. 6, 1970; Flight 97, № 3195, р. 947, 1970). - Прим. перев.

АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ: АЭРОКОСМИЧЕСКИЕ КОНСТРУКЦИИ

К статье АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ

Транспортные самолеты и истребители. Типичная компоновка современного транспортного самолета состоит из усиленного монококового фюзеляжа с двухлонжеронными крыльями и двухлонжеронными элементами хвостового оперения. В конструкциях самолетов используются в основном алюминиевые сплавы, однако для отдельных элементов конструкции применяются и другие материалы. Так, сильно нагруженные корневые части крыла могут быть изготовлены из титанового сплава, а рулевые поверхности - из композиционного материала с полиамидными или стеклянными нитями. В хвостовом оперении некоторых самолетов применяют графито-эпоксидные материалы. В конструкции современного самолета-истребителя воплощены самые последние достижения в области авиастроения. На рис. 16 показана конструкция типичного самолета-истребителя с многолонжеронным треугольным крылом и усиленным монококовым фюзеляжем. Отдельные элементы крыла и хвостового оперения этого самолета выполнены из композиционных материалов.

Кольер. Словарь Кольера. 2012

Смотрите еще толкования, синонимы, значения слова и что такое АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ: АЭРОКОСМИЧЕСКИЕ КОНСТРУКЦИИ в русском языке в словарях, энциклопедиях и справочниках:

  • КОСМИЧЕСКИЕ
    КОСМ́ИЧЕСКИЕ СКОРОСТИ, см. Первая космическая скорость, Третья космическая скорость, Параболическая …
  • КОСМИЧЕСКИЕ в Большом российском энциклопедическом словаре:
    КОСМ́ИЧЕСКИЕ ЛУЧИ, поток стабильных частиц высоких энергий (прибл. от 1 до 10 12 ГэВ), приходящих на Землю из мирового пространства …
  • КОСМИЧЕСКИЕ в Большом российском энциклопедическом словаре:
    "КОСМ́ИЧЕСКИЕ ИССЛЕДОВАНИЯ", науч. журнал РАН, с 1963, Москва. Учредитель (1998) - Президиум РАН. 6 номеров в …
  • АВИАЦИОННО в словаре Синонимов русского языка.
  • АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ в Словаре Кольера:
    Здесь рассматриваются основные (силовые) элементы конструкций самолетов и воздушно-космических летательных аппаратов, современные материалы и важные конструктивные особенности авиационно-космической техники. См. …
  • АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ: КАРКАСНЫЕ КОНСТРУКЦИИ в Словаре Кольера:
    К статье АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ Для увеличения скорости самолета пришлось кардинальным образом изменить его конструкцию - перейти к каркасным конструкциям. Основой …
  • АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ: МОНОКОКОВАЯ КОНСТРУКЦИЯ в Словаре Кольера:
    К статье АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ Принцип монокока. С увеличением скоростей полета самолета все более важной становилась проблема уменьшения лобового сопротивления. Вполне …
  • СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ
    конструкции, несущие и ограждающие конструкции зданий и сооружений. Классификация и области применения. Разделение С. к. по функциональному назначению на несущие …
  • СТАЛЬНЫЕ КОНСТРУКЦИИ в Большой советской энциклопедии, БСЭ:
    конструкции зданий и сооружений, конструкции, элементы которых изготовлены из стали и соединены сваркой, заклёпками или болтами. Благодаря высокой прочности стали …
  • СБОРНЫЕ КОНСТРУКЦИИ в Большой советской энциклопедии, БСЭ:
    конструкции в строительстве, конструкции, собираемые (монтируемые) из готовых элементов, не требующих дополнит. обработки (обрезки, подгонки и пр.) на месте строительства. …
  • ОГРАЖДАЮЩИЕ КОНСТРУКЦИИ в Большой советской энциклопедии, БСЭ:
    конструкции зданий и сооружений, строительные конструкции (стены, перекрытия, покрытия, заполнения проёмов, перегородки и т.д.), ограничивающие объём здания (сооружения) и разделяющие …
  • МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ в Большой советской энциклопедии, БСЭ:
    конструкции, металлоконструкции, общее название конструкций, выполненных из металлов и применяемых в строительстве. Современные М. к. подразделяются на стальные (см. Стальные …
  • КРУПНОПАНЕЛЬНЫЕ КОНСТРУКЦИИ в Большой советской энциклопедии, БСЭ:
    конструкции, сборные конструкции зданий и сооружений из крупноразмерных, монтируемых на строительной площадке, плоскостных элементов (панелей) заводского изготовления. К. к. - …
  • КАМЕННЫЕ КОНСТРУКЦИИ в Большой советской энциклопедии, БСЭ:
    конструкции, несущие и ограждающие конструкции зданий и сооружений из каменной кладки (фундаменты, стены, столбы, перемычки, арки, своды и др.). Для …
  • ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ И ИЗДЕЛИЯ в Большой советской энциклопедии, БСЭ:
    конструкции и изделия, элементы зданий и сооружений, изготовляемые из железобетона, и сочетания этих элементов. Высокие технико-экономические показатели Ж. к. …
  • ДЕРЕВЯННЫЕ КОНСТРУКЦИИ в Большой советской энциклопедии, БСЭ:
    конструкции, строительные конструкции, изготовленные из древесины: Д. к. в виде стержневых систем могут иметь металлические, обычно растянутые, элементы (нижний …
  • ПРОЧНОСТНОЙ РАСЧЕТ КОНСТРУКЦИИ в Словаре Кольера:
    начальный этап проектирования конструкции, на котором определяются действующие на нее силы. Соотношение между расчетом и проектированием. Главная задача здесь - …
  • АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ: СВЕРХЗВУКОВЫЕ САМОЛЕТЫ И ДР. в Словаре Кольера:
    К статье АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ Развитие авиационно-космической техники характеризуется устойчивой тенденцией роста тяговооруженности (тяговооруженностью называется отношение тяги силовой установки летательного аппарата …
  • АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ: КК ШАТТЛ в Словаре Кольера:
    К статье АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ Орбитальный космический корабль "Шаттл" способен летать в атмосфере Земли с гиперзвуковыми скоростями. Крылья аппарата имеют многолонжеронный …
  • АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ: АЭРОКОСМИЧЕСКИЕ МАТЕРИАЛЫ в Словаре Кольера:
    К статье АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ Многие материалы теряют свою прочность при высоких температурах, которые возникают в сверхзвуковом полете. Поэтому для аэрокосмических …
  • ПАРАЛЛЕЛЬНЫЕ СИНТАКСИЧЕСКИЕ КОНСТРУКЦИИ в Словаре лингвистических терминов:
    Конструкции, близкие по значению, но выраженные различными синтаксическими единицами (ср. : синонимические конструкции). Обычно параллельные синтаксические конструкции образуются …
  • СССР. ТЕХНИЧЕСКИЕ НАУКИ в Большой советской энциклопедии, БСЭ:
    науки Авиационная наука и техника В дореволюционной России был построен ряд самолётов оригинальной конструкции. Свои самолёты создали (1909-1914) Я. М. …
  • КОСМИЧЕСКАЯ СТАНЦИЯ: КОСМИЧЕСКИЕ СТАНЦИИ ВРЕМЕН ХОЛОДНОЙ ВОЙНЫ в Словаре Кольера:
    К статье КОСМИЧЕСКАЯ СТАНЦИЯ В конце 1950-х годов специалисты как в Соединенных Штатах, так и в Советском Союзе не имели …
  • АЭРОКОСМИЧЕСКИЕ АППАРАТЫ: СПЕЦИАЛИЗАЦИЯ ПО ПРОФЕССИЯМ в Словаре Кольера:
    К статье АЭРОКОСМИЧЕСКИХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ КОНСТРУИРОВАНИЕ В структуре типичной авиационно-космической компании можно обнаружить ряд групп специалистов, выполняющих специфические функции. Проектирование. …
  • КОСМИЧЕСКИЕ СУЕВЕРИЯ в Справочнике Чудес, необычных явлений, НЛО и прочего:
    большое количество предрассудков и поверий, существующих среди космонавтов, ракетчиков и космических специалистов, возникновение которых связано не столько с идеалистическими настроениями, …
  • ТОКСИКОЛОГИЯ АВИАЦИОННО-КОСМИЧЕСКАЯ в Медицинских терминах:
    раздел Т., изучающий влияние на организм вредных химических веществ, загрязняющих атмосферу кабин летательных аппаратов, и разрабатывающий соответствующие гигиенические нормативы и …
  • КОСМИЧЕСКИЕ ЛУЧИ в Большом энциклопедическом словаре:
  • ФИГУРЫ СТИЛИСТИЧЕСКИЕ в Большой советской энциклопедии, БСЭ:
    стилистические (греч. schema, лат. figura - очертание, внешний вид; оборот речи), система исторически сложившихся способов синтаксической организации речи, применяемых преимущественно …
  • УСТОЙЧИВОСТЬ УПРУГИХ СИСТЕМ в Большой советской энциклопедии, БСЭ:
    упругих систем, свойство упругих систем возвращаться к состоянию равновесия после малых отклонений их из этого состояния. Понятие У. у. с. …
  • ПРОМЫШЛЕННЫЕ ЗДАНИЯ в Большой советской энциклопедии, БСЭ:
    здания, производственные здания промышленных предприятий, здания, предназначенные для размещения промышленных производств и обеспечивающие необходимые условия для труда людей и эксплуатации …
  • НАСОС (ТЕХНИЧ.) в Большой советской энциклопедии, БСЭ:
    устройство (гидравлическая машина, аппарат или прибор) для напорного перемещения (всасывания и нагнетания) главным образом капельной жидкости в результате сообщения ей …
  • МОСТ (СООРУЖЕНИЕ) в Большой советской энциклопедии, БСЭ:
    сооружение, прокладывающее путь над препятствием. Различают М.: по виду преодолеваемого препятствия - М. через реки и др. водотоки (собственно М.), …
  • МЕТРОПОЛИТЕН в Большой советской энциклопедии, БСЭ:
    метро (франц. metropolitain, буквально - столичный, от греч. metropolis - главный город, столица), городская внеуличная железная дорога для массовых скоростных …
  • КОСМИЧЕСКИЕ ЛУЧИ в Большой советской энциклопедии, БСЭ:
    лучи, поток частиц высокой энергии, преимущественно протонов, приходящих на Землю из мирового пространства (первичное излучение), а также рожденное ими в …
  • КОСМИЧЕСКИЕ ЗОНДЫ в Большой советской энциклопедии, БСЭ:
    зонды, космические летательные аппараты, предназначенные для проведения физических исследований околоземного межпланетного космического пространства, небесных тел Солнечной системы и их окрестностей. …
  • ЖЕЛЕЗОБЕТОН в Большой советской энциклопедии, БСЭ:
    сочетание бетона и стальной арматуры, монолитно соединённых и совместно работающих в конструкции. Термин "Ж." нередко употребляется как собирательное название железобетонных …
  • АРХИТЕКТУРА в Большой советской энциклопедии, БСЭ:
    (лат. architectura, от греч. architeкton - строитель), зодчество, система зданий и сооружений, формирующих пространственную среду для жизни и деятельности людей, …
  • АВИАЦИЯ в Большой советской энциклопедии, БСЭ:
    (франц. aviation, от латинского avis - птица), летание на аппаратах тяжелее воздуха в околоземном воздушном пространстве. В 60-е гг. 20 …
  • АВИАЦИОННАЯ ПРОМЫШЛЕННОСТЬ в Большой советской энциклопедии, БСЭ:
    промышленность, зародилась в начале 20 в., как крупная отрасль промышленности развилась в годы 1-й мировой войны 1914-18, огромного роста достигла …
  • КОСМИЧЕСКИЕ СКОРОСТИ. В
  • КОСМИЧЕСКИЕ ЛУЧИ в Современном энциклопедическом словаре:
  • КОСМИЧЕСКИЕ СКОРОСТИ. В
    астрономии и динамике космического полета употребляются понятия трех космических скоростей. Первой космической скоростью (круговой скоростью) называется наименьшая начальная скорость, которую …
  • КОСМИЧЕСКИЕ ЛУЧИ в Энциклопедическом словарике:
    потоки заряженных частиц высокой энергии (до ~1020 эВ), приходящих к Земле из космического пространства. Открыты австрийским физиком В. Гессом в …
  • ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ*
  • ЧАСЫ, ПРИБОР ДЛЯ ИЗМЕРЕНИЯ ВРЕМЕНИ в Энциклопедии Брокгауза и Ефрона.
  • ОТОПЛЕНИЕ* в Энциклопедии Брокгауза и Ефрона.
  • ПОЛЕТА ТЕОРИЯ И ПРАКТИКА: РЕШЕНИЕ ПРОБЛЕМ ПРОЧНОСТИ в Словаре Кольера:
    К статье ПОЛЕТА ТЕОРИЯ И ПРАКТИКА Проблемы прочности самолета связаны с необходимостью минимизации массы конструкции, хотя она и подвергается воздействию …
  • ПЛОТИНА в Словаре Кольера:
    массивная перемычка, возводимая для удержания водного потока, основное гидротехническое сооружение при использовании и регулировании водных ресурсов. Уже в доисторические времена …
  • КОСМИЧЕСКИЕ ПОЛЕТЫ ПИЛОТИРУЕМЫЕ: РЕШЕНИЕ ЛЕТЕТЬ НА ЛУНУ в Словаре Кольера:
    К статье КОСМИЧЕСКИЕ ПОЛЕТЫ ПИЛОТИРУЕМЫЕ "Меркурий" еще только готовился к своему первому полету, а руководство и специалисты НАСА планировали будущие …
  • в Словаре Кольера:
    К статье АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ Аэродинамические характеристики. Элементы конструкции самолета должны обладать высокой прочностью, так как они подвержены воздействию больших нагрузок …
  • АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ: АВИАЦИЯ ДО ПЕРВОЙ МИРОВОЙ ВОЙНЫ в Словаре Кольера:
    К статье АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ На протяжении первых десятилетий развития авиации конструкторы пытались оптимизировать конструкцию самолета путем экспериментирования с различными вариантами …
  • АВИАЦИОННО-КОСМИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ: РЫНКИ СБЫТА в Словаре Кольера:
    К статье АВИАЦИОННО-КОСМИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ Сбыт авиационно-космической продукции осуществляется по пяти основным направлениям. Военные самолеты и ракеты. Военные самолеты различаются по …
  • АВИАЦИОННО-КОСМИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ: ОСОБЕННОСТИ в Словаре Кольера:
    К статье АВИАЦИОННО-КОСМИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ Производственное оборудование авиационно-космической промышленности соответствует сложности ее продукции. В ней широко применяются и новейшие станки, и …
  • АВИАЦИОННО-КОСМИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ в Словаре Кольера:
    совокупность предприятий, занятых конструированием, производством и испытаниями самолетов, ракет, космических аппаратов и кораблей, а также их двигателей и бортового оборудования …
  • ЗАЛОГ в Лингвистическом энциклопедическом словаре:
    (греч. diathesis) — грамматическая категория глагола, выражающая, в соответствии с широко распространенной до недавнего времени точкой зрения, субъектно-объектные отношения. Однако …
  • КОСМИЧЕСКИЕ ЛУЧИ в Современном толковом словаре, БСЭ:
    поток стабильных частиц высоких энергий (приблизительно от 1 до 1012 ГэВ), приходящих на Землю из мирового пространства (первичное излучение), а …
  • МЕДИЦИНСКИЙ ПОСТ АЭРОДРОМА в Медицинских терминах:
    этап медицинской эвакуации в Военно-Воздушных Силах, развертываемый на аэродроме медицинской службой авиационно-технической части для оказания доврачебной помощи и эвакуации пораженных …

Введение

Из курса физики я узнала, что для того чтобы тело стало искусственным спутником Земли, ему нужно сообщить скорость равную 8 км/с (I космическая скорость). Если такую скорость сообщить телу в горизонтальном направлении у поверхности Земли, то при отсутствии атмосферы оно станет спутником Земли, обращающимся вокруг нее по круговой орбите.

Такую скорость спутникам способны сообщать только достаточно мощные космические ракеты. В настоящее время вокруг Земли обращаются тысячи искусственных спутников!

А для того чтобы достичь других планет космическому кораблю необходимо сообщить II космическую скорость, это около 11, 6 км/с! Например чтобы достичь Марса, что в скором времени собираются сделать американцы, нужно лететь с такой огромной скоростью более восьми с половиной месяцев! И это не считая обратной дороги на Землю.

Каким же должно быть устройство космического корабля, чтобы достичь таких огромных, невообразимых скоростей?! Данная тема меня сильно заинтересовала, и я решила узнать все тонкости конструкции космических кораблей. Как оказалось, задачи практического конструирования вызывают в жизни новые формы летательных аппаратов и требуют разработки новых материалов, которые в свою очередь создают новые проблемы и выявляют много интересных аспектов старых проблем как в области фундаментальных, так и в области прикладных исследований.

Материалы

Основу развития техники составляют знания о свойствах материалов. Во всех космических аппаратах используются разнообразные материалы в самых различных условиях.

В последние несколько лет резко возросло количество изучаемых материалов и представляющих для нас интерес характеристик. Быстрый рост количества технических материалов, используемых при создании космических кораблей, а также возрастающая взаимозависимость конструкций космических кораблей и свойств материалов иллюстрируются табл. 1. В 1953 г. алюминий, магний, титан, сталь и специальные сплавы представляли интерес в первую очередь как авиационные материалы. Пять лет спустя, в 1958 г., они получили широкое применение в ракетостроении. В 1963 г. каждая из указанных групп материалов включала уже сотни комбинаций элементов или составных частей, а количество представляющих интерес материалов увеличилось на несколько тысяч. В настоящее время почти везде нужны новые и усовершенствованные материалы, и вряд ли положение изменится в будущем.

Таблица 1

Материалы, используемые в конструкциях космических аппаратов

Материал

Бериллий

Материалы, обеспечивающие регулирование теплового режима

Термоэлектрические материалы

Фотоэлектрические материалы

Защитные покрытия

Керамика

Материалы, армированные нитями

Уносимые покрытия (абляционные материалы)

Слоистые материалы

Полимеры

Тугоплавкие металлы

Специальные сплавы

Титановые сплавы

Магниевые сплавы

Алюминиевые сплавы

Потребность в новых знаниях в области материаловедения и технологии материалов находит отклик в наших университетах, частных компаниях, независимых исследовательских организациях и различных правительственных органах. Табл.2 дает некоторое представление о характере и масштабах исследований, проводимых НАСА в области разработки новых материалов. Эти работы включают как фундаментальные, так и прикладные исследования. Наибольшие усилия сосредоточены в области фундаментальных исследований по физике твердого тела и химии. Здесь представляют интерес атомное строение материи, межатомные силовые взаимодействия, движение атомов и особенно влияние дефектов, соизмеримых с размерами атомов.

Таблица 2

Программа исследования материалов

К следующей категории относятся конструкционные материалы с большой удельной прочностью, как титан, алюминий и бериллий, теплостойкие и тугоплавкие сплавы, керамика и полимеры. К особой группе следует отнести материалы для сверхзвуковой транспортной авиации.

В программе НАСА постоянно возрастает интерес к категории материалов, используемых в электронике. Ведутся исследования сверхпроводников и лазеров. В группе полупроводников изучаются как органические, так и неорганические материалы. Ведутся также исследования в области термоэлектроники.

И наконец, программа исследования материалов завершается рассмотрением с весьма общих позиций вопросов практического использования материалов.

Чтобы показать потенциальные возможности применения результатов исследования материалов в будущем, я остановлюсь на исследованиях, связанных с изучением влияния пространственного расположения атомов на фрикционные свойства металлов.

Если бы удалось уменьшить трение между соприкасающимися металлическими поверхностями, то это позволило бы усовершенствовать практически все типы механизмов с подвижными частями. В большинстве случаев трение между соприкасающимися поверхностями велико, и чтобы его снизить, применяется смазка. Однако понимание механизма трения между несмазанными поверхностями также представляет большой интерес.

На рис.1 представлены некоторые результаты исследований, проведенных в Льюисском исследовательском центре. Эксперименты проводились в условиях глубокого вакуума, так как атмосферные газы загрязняют поверхности и резко изменяют их фрикционные свойства. Первый важный вывод состоит в том, что фрикционные характеристики чистых металлов в сильной степени зависят от их естественной атомной структуры (см. левую часть рис.1). При затвердевании металлов атомы одних образуют гексагональную пространственную решетку, а атомы других - кубическую. Было показано, что металлы с гексагональной решеткой обладают гораздо меньшим трением, чем металлы с кубической решеткой.

Рис 1. Влияние атомной структуры на сухое трение (без смазки).

Рис.2. Требования к теплостойким материалам.

Затем был исследован ряд металлов, атомы которых расположены в вершинах шестигранных призм с разными расстояниями между их основаниями. Исследования показали, что трение уменьшается с увеличением высоты призм (см. центральную часть рис.1). Наименьшим трением обладают металлы с максимальным отношением расстояния между основаниями призм к расстоянию между боковыми гранями. Этот экспериментальный результат согласуется с выводами теории деформации металлов.

На следующем этапе в качестве объекта исследования был выбран титан, о котором известно, что он имеет гексагональную структуру и плохие фрикционные характеристики. Чтобы улучшить фрикционные характеристики титана, стали исследовать его сплавы с другими металлами, присутствие которых должно было увеличить размеры атомных решеток. Как и ожидалось, с увеличением расстояния между основаниями призм трение резко уменьшилось (см. правую часть рис.1). В настоящее время проводятся дополнительные эксперименты по дальнейшему улучшению свойств титановых сплавов. Например, мы можем "упорядочить" сплав, т.е. с помощью термообработки расположить атомы разных элементов более подходящим образом и исследовать, как это повлияет на трение. Новые достижения в этой области повысят надежность машин, имеющих вращающиеся части, и, по-видимому, откроют широкие возможности в будущем.

Хотя может создаться впечатление, что в последнее время мы достигли больших успехов в разработке теплостойких материалов, прогресс в исследовании космического пространства в следующие 35 лет будет тесно связан с разработкой новых материалов, которые могли бы работать при высоких температурах в течение многих часов, а в некоторых случаях и лет.

На рис.2 показано, как это важно. По оси ординат здесь отложено время работы в часах, а по оси абсцисс - рабочая температура в градусах Цельсия. В заштрихованной области от 1100 до 3300°С единственными металлическими материалами, которые можно использовать, являются тугоплавкие металлы. На оси ординат горизонтальной чертой отмечена продолжительность работы, равная одному году. Область рабочих параметров ядерного ракетного двигателя ограничена температурами от 2100 до 3200° С и продолжительностью работы от 15 мин до 6 час. (Эти цифры являются весьма приближенными и приводятся только для ориентировочного определения границ области рабочих параметров.)

Область с надписью "гиперзвуковые самолеты" характеризует условия работы материалов обшивки. Здесь требуется гораздо большая продолжительность работы. Для космических аппаратов многократного использования называют времена работы всего от 60 до 80 час, однако на самом деле может потребоваться продолжительность работы порядка тысяч часов в интервале температур от 1320 до 1650° С и более.

По рис.2 можно судить о значении тугоплавких металлов для решения задач, которые ставит программа исследования космического пространства. Некоторые из этих материалов уже применяются, и я уверена, что они будут усовершенствованы и приобретут с течением времени еще большее значение.

Иногда можно услышать, что современная технология материалов на самом деле не наука, а скорее высокоразвитое искусство. Возможно, это отчасти и так, но я уверена, что материаловедение и технология материалов уже достигли весьма высокого уровня развития и сыграют большую роль в жизни нашей страны.

Конструкции космических аппаратов

Обратимся теперь к вопросам конструирования космических аппаратов. На рис.3 указаны основные конструктивные проблемы, возникающие при проектировании современных ракет-носителей и космических летательных аппаратов. К ним относятся: нагрузки, действующие на конструкцию, динамика и механика полета; разработка конструкций, выдерживающих большие тепловые нагрузки; защита от воздействия условий космического пространства, а также разработка новых конструкций и комбинаций материалов для применения в будущем.

Рис.3. Конструкции космических аппаратов.

Разработка конструкций космических аппаратов находится еще на ранней стадии развития и базируется на опыте конструирования самолетов и баллистических ракет. Из рис.4 следует, что большие современные ракеты-носители во многом родственны баллистическим ракетам. К отличительным особенностям их конфигураций следует отнести большое удлинение, снижающее сопротивление атмосферы, и большой объем, занимаемый топливом. Вес топлива может составлять от 85 до 90% стартового веса ракеты-носителя. Удельный вес конструкции очень мал, так что по существу это тонкостенная гибкая оболочка. При сегодняшней высокой стоимости единицы веса полезной нагрузки, выведенной на орбиту или траекторию полета к Луне и планетам, особо выгодно уменьшение веса основной конструкции до допустимого минимума. Еще более остро встают проблемы конструирования в случае использования в качестве топливных компонентов жидких водорода и кислорода, имеющих малый удельный вес, вследствие чего возникает потребность в больших объемах для размещения топлива.

Рис.4. Большие ракеты-носители.

Конструктор будущих ракет-носителей столкнется со многими новыми сложными проблемами. Ракеты-носители, по всей вероятности, будут больших размеров, станут сложней и дороже. Для многократного их использования без больших затрат на обратную доставку или ремонт потребуется решить важные задачи конструирования и технологии материалов.

Необычные требования, предъявляемые к разным типам космических аппаратов будущего, уже активизировали поиски новых типов конструкций и производственных процессов.

Требования защиты от опасностей, ожидающих нас в космическом пространстве, таких, как метеориты, жесткое и тепловое излучение, в значительной мере активизируют исследования, проводимые с целью создания конструкций космических аппаратов. Например, при длительном хранении жидкого водорода и других криогенных жидкостей в условиях космического пространства утечка компонентов топлива через дренажную систему и метеоритные пробоины в топливных баках должна быть практически исключена. Значительные успехи достигнуты в области разработки изоляционных материалов, обладающих исключительно малой теплопроводностью. Сейчас можно обеспечить хранение топлива в течение времени нахождения на стартовой площадке и нескольких оборотов вокруг Земли. Однако при длительном хранении в условиях космического пространства сроком до одного года возникает очень сложная проблема, связанная с притоком тепла через элементы конструкции баков и трубопроводы.

Другие проблемы космического полета, такие, как проблема складывающихся больших космических аппаратов или их частей в процессе вывода на орбиту с последующей их сборкой в космическом пространстве, также потребуют новых конструктивных решений. В то же время в течение космического полета на космический аппарат не воздействуют ни гравитационные, ни аэродинамические силы, что расширяет область возможных решений при проектировании. На фиг.5 показан пример необычного конструктивного решения, возможного только в условиях космического пространства. Это один из вариантов орбитального радиотелескопа, имеющего гораздо большие размеры, чем те, которые можно было бы обеспечить на Земле.

Такие устройства нужны для изучения естественного радиоизлучения звезд, галактик и других небесных объектов. Одна из полос радиочастот, представляющих интерес для астрономов, лежит в диапазоне от 10 Мгц и ниже. Радиоволны с такой частотой не проходят через земную ионосферу. Для приема низкочастотного радиоизлучения необходимы орбитальные антенны чрезвычайно больших размеров. В левой части фиг.5 показана кривая зависимости диаметра антенны от частоты принимаемого излучения. Видно, что с уменьшением частоты диаметр антенны увеличивается и для приема радиоволн с частотой менее 10 Мгц нужны антенны диаметром более 1,5 км.

Рис 5. Новые конструкции. Орбитальные антенны.

Антенну таких размеров нельзя вывести на орбиту, да и ее вес при использовании обычных принципов проектирования намного превысит возможности самых больших ракет-носителей. Даже с учетом отсутствия силы тяжести проектирование таких антенн представляет большие трудности. Например, если сделать рефлектор антенны сплошным из алюминиевой фольги толщиной всего 0,038 мм, то и тогда вес материала поверхности при диаметре антенны 1,6 км будет составлять 214 т. К счастью, благодаря малой частоте принимаемого радиоизлучения поверхность антенны можно сделать решетчатой. Последние достижения в области больших ажурных конструкций позволяют выполнить решетку из тонких нитей. При этом материал, образующий поверхность антенны, будет весить от 90 до 140 кг. Такая конструкция позволит вывести антенну на орбиту и затем собрать ее. Одновременно можно обеспечить плотную упаковку антенны вместе с системами стабилизации и энергообеспечения.

Жесткое излучение в космическом пространстве по-прежнему будет главным разрушительным фактором для запускаемых в космос аппаратов. Это разрушение связано отчасти с бомбардировкой космических аппаратов протонами больших энергий в радиационных поясах, а также с солнечными вспышками. Исследование эффектов, возникающих при такой бомбардировке, указывает на необходимость изучения сущности механизмов разрушения и определения характеристик материалов, используемых в качестве защитных экранов.

Рис.6. Новые принципы экранирования.
1 - сверхпроводящие катушки; 2 - магнитное поле; 3 - положительный заряд космического аппарата; 4 - поглощающий экран; 5 -плазменная защита.

Разработка новых способов защиты должна включать также исследование возможности экранирования с помощью сверхпроводящих магнитов, что позволит существенно снизить вес защитных устройств и тем самым увеличить полезную нагрузку космических аппаратов, предназначенных для длительных полетов.

На рис.6 иллюстрируется эта новая идея, получившая название плазменной защиты. Для отклонения заряженных частиц, таких, как протоны и электроны, используется комбинация магнитного и электростатического полей. Основой плазменной защиты является образуемое сравнительно легкими сверхпроводящими катушками магнитное поле, которое окружает весь аппарат. На тороидальных космических станциях экипаж и аппаратура располагаются в зоне малой напряженности магнитного поля. Космический аппарат заряжается положительно благодаря инжекции электронов в окружающее магнитное поле. Эти электроны несут отрицательный заряд, равный по величине положительному заряду космического аппарата. Несущие положительный заряд протоны из окружающего аппарат космического пространства будут отталкиваться положительным зарядом аппарата. Электроны, движущиеся в окружающем аппарат пространстве, могли бы разрядить электростатическое поле, однако этому препятствует магнитное поле, искривляющее их траектории.

Зависимость веса таких защитных систем от объема космического аппарата графически представлена в нижней части рис.6. Для сравнения приведены соответствующие веса защитного экрана, представляющего собой слой материала на пути излучения. Так как для управления движением потока электронов требуется магнитное поле весьма умеренной напряженности, то вес плазменной защиты в типичных случаях составит около 1/20 веса обычного поглощающего экрана.

Хотя идея плазменной защиты является многообещающей, с ее работой в условиях космического пространства связано еще много неясного. В связи с этим в настоящее время ведутся теоретические и экспериментальные исследования возможной неустойчивости электронного облака или взаимодействия с пылью и космической плазмой. Пока что не обнаружено никаких принципиальных трудностей, и можно надеяться, что космической радиации можно будет противопоставить плазменную защиту, весовые характеристики которой будут значительно лучше, чем у других типов защиты.

Вход в атмосферу

Обратимся теперь к проблеме входа космических аппаратов в атмосферу Земли и других планет. Основную трудность здесь, безусловно, представляет защита от тепловых потоков, возникающих в процессе входа в атмосферу. Колоссальная кинетическая энергия космического аппарата должна быть преобразована в другие виды энергии, в основном в механическую и тепловую, так как в противном случае аппарат либо сгорит, либо получит повреждения. Скорости входа космических аппаратов составляют от 7,6 до 18,3 км/сек. При меньших скоростях основную часть теплового потока составляет конвективный тепловой поток, однако при скоростях выше ~ 12,2 км/сек большую роль начинает играть тепловой поток излучения от головной ударной волны. Современные теплозащитные материалы эффективны до скоростей ~ 11 км/сек на аппаратах, имеющих малое аэродинамическое качество, однако при скоростях входа от 15,2 до 18,3 км/сек требуются новые материалы.

Рис.7 помогает понять, почему в будущем для решения задач входа в атмосферу пилотируемых космических кораблей большой интерес представят аппараты, способные развивать значительную подъемную силу. По оси ординат отложено отношение подъемной силы к силе лобового сопротивления L/D (аэродинамическое качество) при гиперзвуковых скоростях, а по оси абсцисс - скорость входа. Первые признаки тенденции увеличения аэродинамического качества видны на примере космических кораблей "Меркурий", "Джемини" и "Аполлон". Ожидается, что в будущем орбитальные полеты вокруг Земли достигнут высоты синхронных орбит. Корабли, входящие в земную атмосферу из этой области космического пространства, будут иметь скорости до 10,4 км/сек (на рис. 7 вертикальная линия с надписью "Синхронные орбиты").

Скорости входа пилотируемых космических кораблей, возвращающихся с других планет, например с Марса, гораздо больше. При надлежащем выборе времени старта и использовании притяжения Венеры они достигают 12,2 - 13,7 км/сек, в то время как при непосредственном возвращении с Марса скорости превышают 15,2 км/сек. Интерес к таким большим скоростям входа связан с большей гибкостью способа непосредственного возвращения с планеты.

Рис 7. Тенденции к увеличению аэродинамического качества космических кораблей и скорости входа в атмосферу Земли.

Для поддержания в разумных пределах перегрузок, испытываемых экипажем корабля при столь больших скоростях входа, необходимо увеличение аэродинамической подъемной силы по сравнению с кораблем "Аполлон". Кроме того, увеличение подъемной силы (правильней сказать, аэродинамического качества L/D) при больших скоростях расширит допустимые коридоры входа, которые для баллистических спускаемых аппаратов сужаются до нуля. С увеличением подъемной силы возрастает также точность маневрирования и приземления. Одна из важнейших фаз полета космических кораблей, обладающих подъемной силой, - заход на посадку и сама посадка. Летные характеристики космических аппаратов с подъемной силой на малых скоростях так сильно отличаются от характеристик обычных самолетов, что для их исследования пришлось построить два летательных аппарата, показанных на рис.8. Верхний аппарат имеет индекс HL-10 , а нижний M2-F2.

Рис. 8. Летательные исследовательские аппараты HL-10 и M2-F2.

Эти аппараты предполагается поднимать на высоту около 14 км с помощью самолетов В-52 и сбрасывать при скоростях полета, соответствующих числу Маха до 0,8. На аппаратах HL-10 и M2-F2 установлены небольшие ракетные двигатели, работающие на перекиси водорода, которые позволяют моделировать переменное аэродинамическое качество. С помощью этих двигателей можно варьировать угол наклона траектории при заходе на посадку, а также запас статической устойчивости, чтобы определить оптимальные летные характеристики будущих пилотируемых космических кораблей аналогичной конфигурации. Корабли такой формы будут иметь вес, близкий к весу космических кораблей будущего. И уже создан корабль похожий на данные модели космических кораблей, это орбитальный космический корабль «Шаттл».

Космический корабль «Шаттл»

Орбитальный космический корабль «Шаттл» способен летать в атмосфере Земли с гиперзвуковыми скоростями. Крылья аппарата имеют многолонжеронный каркас; усиленный монокок кабины экипажа, как и крылья, изготовлен из алюминиевого сплава. Двери грузового отсека выполнены из графито-эпоксидного композиционного материала. Теплозащиту аппарата обеспечивают несколько тысяч легких керамических плиток, которыми покрывают части поверхности, подверженные воздействию больших тепловых потоков.

Заключительные замечания

Я пыталась дать краткий обзор последних достижений в области разработки новых материалов, конструкций и техники входа космических аппаратов в атмосферу. Это позволило указать некоторые направления будущих исследований. И, кажется, я сама немножко узнала о проблемах освоения космоса с помощью космических кораблей на современном этапе развития человечества

Аэродинамические характеристики.

Элементы конструкции самолета должны обладать высокой прочностью, так как они подвержены воздействию больших нагрузок при полете, посадке и движении самолета по земле. В то время как форма стационарных наземных сооружений, например зданий или мостов, может быть определена конструктором из соображений прочности и экономичности, конструкция самолета должна, кроме того, удовлетворять ряду жестких дополнительных требований, в частности аэродинамических. Например, крыло должно выдерживать изгибающие и крутящие силы и моменты, возникающие в результате нестационарного силового воздействия воздушного потока на поверхность крыла. Наиболее эффективно такие нагрузки выдерживает жестко заделанная балка, однако такая конструкция непригодна с точки зрения аэродинамики, согласно которой поперечные сечения крыла должны быть тонкими, хорошо обтекаемыми профилями. Этот пример иллюстрирует важную особенность авиационных конструкций, при проектировании которых наряду с выполнением требований прочности необходимо обеспечивать высокие аэродинамические характеристики.

Весовые характеристики.

Второй характерной особенностью авиационно-космических конструкций является стремление снизить их вес до минимально возможного. В противном случае самолет или ракета не сможет взлететь или взять на борт необходимый полезный груз. По этой причине проектирование и расчет авиационно-космических конструкций проводят с такой точностью, что допускается только тот вес, который совершенно необходим для прочности. Столь малый вес конструкции может быть достигнут только в результате использования тонких и удлиненных конструктивных элементов из высокопрочных материалов.

Конструктивные соображения.

Таким образом, две основные особенности, которые отличают авиационные конструкции от наземных инженерных сооружений, – это влияние аэродинамических нагрузок на форму конструкции и использование исключительно легких удлиненных и тонкостенных элементов из высокопрочных материалов. На различных этапах развития авиации предлагались различные конструктивные решения для самолетов. Существует очевидная связь между оптимальной конструкцией самолета и его скоростью. Интересно отметить, что некоторые конструктивные решения, принятые на ранней стадии развития авиации, оказались приемлемыми и для современных самолетов, летающих в том же диапазоне скоростей. Так, сварной фюзеляж из стальных трубок во время Первой мировой войны был новинкой, позволившей улучшить характеристики истребителей и увеличить скорости их полета до 160 км/ч. Подобные конструкции стали совершенно непригодными для истребителей времен Второй мировой войны , которые летали со скоростями около 640 км/ч. С другой стороны, спортивные самолеты и самолеты для личного пользования, появившиеся намного позднее, редко развивают скорость больше 160 км/ч, и в конструкциях их фюзеляжей успешно применяются свариваемые металлические трубки.

АВИАЦИЯ ДО ПЕРВОЙ МИРОВОЙ ВОЙНЫ

На протяжении первых десятилетий развития авиации конструкторы пытались оптимизировать конструкцию самолета путем экспериментирования с различными вариантами и схемами. Оказалось, что многие конструктивные схемы, которые предлагались в заявках на изобретения в 1930-х годах, имели свои прототипы, которые уже предлагались в начале этого столетия, но были отвергнуты и с течением времени забыты. Одна существенная особенность, общая для всех самолетов, построенных до Первой мировой войны, заключалась в том, что на них применялись исключительно тонкие крылья. Тогда считалось, что требуемая подъемная сила может быть достигнута только на очень тонких, плоских или слегка изогнутых аэродинамических поверхностях. Такое тонкое крыло, подобное тонкой пластине, изгибается даже под действием небольшой нагрузки. Для того чтобы обеспечить требуемые жесткость и прочность, крыло подкреплялось наружными расчалками.

Расчалочный моноплан.

На раннем этапе развития авиации успешно использовались две компоновочные схемы самолетов – расчалочный моноплан (рис. 1, а ) и биплан (рис. 2). Примерами монопланов являются самолеты конструкции Альберто Сантоса-Дюмона и Луи Блерио . Бипланы конструировали братья Райт . Простой анализ равновесия сил и моментов показывает, каким образом внешние расчалки и распорки усиливают прочность конструкции. На рис. 1,б видно, что вес G самолета уравновешен подъемной силой Y , возникающей при обтекании крыла воздушным потоком. Подъемная сила приложена на расстоянии d от центра тяжести и создает момент Yd . Этот момент должен быть уравновешен моментом сил реакции, поскольку система крыло – расчалка находится в равновесии, как показано на рис. 1,б . Под действием подъемной силы нижняя расчалка натягивается, а верхняя – ослабляется. Следовательно, в полете верхняя расчалка не передает никаких усилий на фюзеляж, и силы реакции будут возникать только в месте соединения крыла с нижней расчалкой. Это силы H на рис. 1,б . Их величина может быть вычислена из условия равновесия для моментов:

Из этого простого алгебраического уравнения находим величину горизонтальной силы реакции H :

Формула (2) показывает, что горизонтальная сила реакции тем меньше, чем больше расстояние h между крылом и местом крепления нижней расчалки к фюзеляжу. Когда самолет приземляется или движется по полосе, подъемная сила на крыле небольшая, так как она пропорциональна квадрату скорости. В таких условиях часть веса крыла должна удерживаться верхней расчалкой, а нижняя расчалка при этом разгружается. По этой причине верхняя расчалка называется «посадочной», или обратной, а нижняя – «полетной», или несущей. Тонкое крыло не способно выдерживать большие нагрузки. Поэтому необходимо увеличивать расстояние h , т.е. крепить несущую расчалку вблизи шасси, а верхнюю – к пилону, который в этих целях размещают над фюзеляжем.

Расчалочный биплан.

Для увеличения вертикальных расстояний при креплении расчалок была предложена конструкция биплана (рис. 2). Расстояние между верхним и нижним крыльями биплана соответствует расстоянию h , рассмотренному выше в связи с конструкцией моноплана, тогда как в качестве d принимается расстояние между распоркой и фюзеляжем. Уравнения (1) и (2) применимы к биплану, который позволяет увеличить высоту h по сравнению с монопланом.

Авиационные материалы.

В конструкциях первых самолетов применялись в основном прочные породы дерева , такие, как ель и бамбук . Существовало мнение, что тяжелые материалы, вроде металлов, непригодны для изготовления авиационных конструкций. Сталь использовалась для расчалок. Древесина, несомненно, превосходный конструкционный материал, успешно воспринимающий изгибающие нагрузки при небольшом собственном весе. При этом внешние обводы крыла и фюзеляжа получали путем натягивания полотна на деревянный каркас.

Проблема лобового сопротивления.

Главным недостатком расчалочных конструкций является большое лобовое сопротивление (сила сопротивления поступательному движению аппарата в воздухе) вследствие наличия множества вспомогательных элементов конструкции, таких, как расчалки, распорки, колеса шасси, валы и амортизаторы посадочного устройства, которые подвергаются воздействию воздушного потока. Такой самолет мог развить относительно небольшую максимальную скорость (мировой рекорд скорости полета в 1910 составлял лишь 106 км/ч).

КАРКАСНЫЕ КОНСТРУКЦИИ

Для увеличения скорости самолета пришлось кардинальным образом изменить его конструкцию – перейти к каркасным конструкциям. Основой каркасного самолета является его фюзеляж, в который заключены кабина экипажа, пассажирский салон и грузовые отсеки. На фюзеляж передаются также большие нагрузки, которые действуют на хвостовое оперение самолета при совершении быстрого маневра. Силовой набор каркасной конструкции, показанной на рис. 3,а , обладает малым весом и в то же время способен выдержать значительные нагрузки.

Сварные фюзеляжи из стальных трубок.

Некоторые первые самолеты имели каркасные фюзеляжи, собранные из еловых или бамбуковых брусков, скрепленных стальной проволокой. Однако такие конструкции были недостаточно прочны; существенным продвижением вперед явилась сварная конструкция фюзеляжа из стальных трубок, предложенная в годы Первой мировой войны А.Фоккером . Фоккер использовал для самолетных конструкций мягкую сталь с содержанием углерода менее 0,12%, так как изготовленные из нее элементы легко свариваются друг с другом. Вначале такой тип фюзеляжа считали ненадежным, но постепенно он нашел широкое применение, а с появлением высокопрочных хромомолибденовых трубок удалось существенно снизить вес фюзеляжа.

Фюзеляжи с разъемными соединениями элементов.

Совершенно другие авиационные конструкции разрабатывались в Англии, где считали сварку ненадежным способом соединения и отдельные элементы каркаса соединяли с помощью механических, часто весьма искусных разъемов. Отказ от сварки открыл англичанам широкие возможности применения алюминиевых сплавов и высоколегированных сталей, которые не поддавались сварке. Эти высокопрочные материалы позволили снизить вес конструкции самолета, несмотря на дополнительный вес соединений. Главным недостатком фюзеляжа с разъемными соединениями элементов была высокая стоимость изготовления, даже если самолеты выпускались большими сериями. Производство сварных фюзеляжей из стальных трубок обходилось намного дешевле.

Обшивка.

Чтобы создать комфортные условия для пассажиров, каркас необходимо покрыть обшивкой. Более того, еще в начале века было установлено, что для повышения скорости и уменьшения сопротивления необходимо, чтобы наружная поверхность самолета была гладкой. Самой простой обшивкой было полотно, которое натягивалось на балочный каркас и затем покрывалось краской или лаком. Однако получаемая таким образом форма не имела плавных обводов: внешние элементы каркаса выпирали из-под обшивки. Очевидно, что при таких неуклюжих формах невозможно было добиться плавного обтекания с минимальным сопротивлением. Чтобы устранить этот недостаток, конструкторы скоростных самолетов начали применять каркасный фюзеляж из шпангоутов овальной формы, скрепленных с балками (лонжеронами) и продольными стрингерами, как показано на рис. 3,б . Эти шпангоуты и стрингеры придавали прямоугольному каркасу хорошо обтекаемую форму. Однако выступы по-прежнему выпирали из-под полотняной обшивки, и для их устранения конструкторы стали применять обшивку из тонкой фанеры.

Крылья биплана.

Типичной схемой каркасных самолетов был биплан, который использовался почти повсеместно в годы Первой мировой войны. Ему отдавали предпочтение до середины 1930-х годов. Летчики-истребители отрицательно относились к монопланам, и их основной аргумент состоял в том, что биплан более маневрен. Действительно, биплан обладает хорошей маневренностью из-за небольшого размаха своих крыльев, вследствие чего вес самолета сосредоточен вблизи фюзеляжа. Авиационные инженеры формулируют это свойство иначе, говоря, что биплан обладает небольшим моментом инерции.

Традиционная конструкция деревянного крыла биплана показана на рис. 4. Она содержит два главных несущих элемента – лонжероны крыла. Внешний обвод крыла формируется с помощью элементов, называемых нервюрами, и натянутой на них полотняной обшивки. Эта авиационная конструкция оставалась неизменной до 1920-х годов, когда авиационная промышленность Англии перешла на цельнометаллические конструкции. Теперь лонжероны начали изготавливать из полос высоколегированной стали, а нервюры – из стальных или алюминиевых пластин посредством штамповки нужных профилей. Лонжероны и нервюры собирались в ажурную конструкцию каркасного типа.

Моноплан с высокорасположенным крылом.

Монопланы с высокорасположенным крылом появились в 1930-х годах и быстро стали популярными в качестве двухместных самолетов для личного пользования и учебно-тренировочных самолетов взамен бипланной схемы. Даже после Второй мировой войны многие самолеты этого типа имели расчалки.

Такой моноплан значительно отличался от своего предшественника. Его намного более толстое крыло расположено над фюзеляжем, и вместо расчалок применены стойки. Стойки могут воспринимать большие усилия как сжатия, так и растяжения, и одна стойка заменяет пару расчалок. Такой самолет не содержит ряда элементов конструкции расчалочного моноплана и имеет значительно меньшее лобовое сопротивление (рис. 5).

Свободнонесущий моноплан.

Важным шагом вперед по сравнению с бипланом стала схема свободнонесущего моноплана, нашедшая широкое применение в 1920-х годах в самолетах Фоккера. На рис. 6 показана принципиальная схема фоккеровского высокоплана, на котором были установлены многие рекорды на дальность полета. Применительно к этой схеме обратимся еще раз к уравнению (1), выражающему равенство моментов. Теперь силы H – это силы растяжения или сжатия, действующие на фланцы лонжерона, и h – расстояние между фланцами. Нагрузку на фланец можно уменьшить, увеличив расстояние между фланцами, для чего необходимо увеличить толщину сечения крыла. Конструкция крыла Фоккера с относительной толщиной (отношение максимальной толщины профиля к хорде крыла) 20% обладает хорошими аэродинамическими характеристиками.

Свободнонесущее крыло конструкции Фоккера имело деревянные лонжероны и нервюры и обшивку из фанеры. Очень прочное и жесткое, оно все же было несколько тяжелее других аналогичных конструкций. В ряде стран, например в Англии, Италии и Советским Союзе, были созданы металлические свободнонесущие крылья со стальными и алюминиевыми лонжеронами и нервюрами и полотняной обшивкой. В дальнейшем применение металлической обшивки позволило существенно повысить прочность крыла. Такое крыло обычно называют крылом с работающей обшивкой. Методы изготовления и сборки, а также расчет таких конструкций существенно отличаются от методов, используемых для крыла каркасной конструкции.

МОНОКОКОВАЯ КОНСТРУКЦИЯ

Принцип монокока.

С увеличением скоростей полета самолета все более важной становилась проблема уменьшения лобового сопротивления. Вполне естественным шагом при этом стала замена полотняной обшивки крыла металлической обшивкой, изготавливаемой из тонких листов алюминиевых сплавов. Металлическая обшивка позволила устранить прогибы между нервюрами и, следовательно, более точно воспроизвести формы, рекомендованные аэродинамиками на основе теоретических расчетов и экспериментальных исследований в аэродинамических трубах. Одновременно изменилась конструкция фюзеляжа. Прямоугольный силовой каркас был помещен внутрь оболочечной конструкции, составленной из легких шпангоутов и стрингеров; такая конструкция лучше удовлетворяла требованиям аэродинамики к форме фюзеляжа. На одномоторных самолетах переднюю часть фюзеляжа тоже стали обшивать листовым металлом, чтобы уменьшить вероятность возникновения пожара. Когда потребовалось улучшить гладкость поверхности, полотняную обшивку заменили фанерной или металлической по всей длине фюзеляжа, но такая обшивка стала чрезмерно дорогой и тяжелой. Было слишком расточительно так увеличивать вес конструкции и не использовать ее возросшие прочностные свойства для восприятия аэродинамических нагрузок.

Следующий шаг был очевиден. Так как внешняя оболочка фюзеляжа стала достаточно прочной, появилась возможность убрать внутренний каркас. В этом состоит принцип монококовой конструкции. Монокок – это цельная оболочка, форма которой удовлетворяет требованиям аэродинамики и в то же время является достаточно прочной для того, чтобы воспринимать и передавать нагрузки, возникающие при полете, посадке и движении самолета по земле. Термин «монокок» – гибрид, составленный из греческого и французского слов и дословно переводимый как «цельная раковина». Этот термин применяют к крыльям и фюзеляжам, у которых обшивка является главным несущим элементом.

Второе важное достоинство монококовой конструкции иллюстрирует рис. 7. Сечение каркасной конструкции, предназначенной для размещения внутри нее двух человек, имеет прямоугольную форму, изображенную сплошной линией. Внешняя оболочка фюзеляжа с полотняной обшивкой показана штриховой линией. Внешний обвод монококового фюзеляжа, в котором помещаются два человека, представлен штрих-пунктирной линией. С помощью планиметра легко установить, что площадь поперечного сечения монококовой конструкции на 33% меньше, чем для хорошо обтекаемого каркасного фюзеляжа. При прочих равных условиях сопротивление фюзеляжа пропорционально площади его поперечного сечения. Следовательно, монококовая конструкция, в первом приближении, позволяет уменьшить сопротивление на 33% только за счет меньшей площади поперечного сечения по сравнению с каркасной конструкцией. К тому же появляется выигрыш в подъемной силе вследствие лучшего обтекания и гладкости поверхности. Однако каркасные конструкции из-за меньшей стоимости их производства и относительно меньшего веса продолжали использовать для тихоходных самолетов даже после Второй мировой войны. Монококовые конструкции применяли на самолетах, летающих со скоростями более 320 км/ч.

Тонкостенные монококи.

Типичный тонкостенный монокок для транспортного самолета изготавливают обычно из тонких пластин алюминиевого сплава, которым придают форму, согласующуюся с требованиями аэродинамики. Эту оболочку подкрепляют поперечными силовыми элементами – шпангоутами, и продольными силовыми элементами – лонжеронами или стрингерами. (Эти термины относятся к конструкции фюзеляжа. В конструкции крыла продольные силовые элементы – стрингеры, а поперечные – нервюры.) На рис. 8 показано, как устроен типичный монококовый фюзеляж. (Эту конструкцию сейчас принято называть «полумонокок» или «усиленный монокок», тогда как термин «чистый монокок» или просто «монокок» используют для внешних оболочек, имеющих минимум подкрепляющих элементов или не имеющих их вовсе.)

Вследствие больших размеров фюзеляжа и сравнительно небольших аэродинамических нагрузок оболочку монокока делают очень тонкой (обычно от 0,5 до 1,5 мм). Такая тонкая оболочка сохраняет свою форму, если на нее действуют силы растяжения, но она коробится под действием сил сжатия или срезывающих усилий. На рис. 9 показано действие сил сжатия на металлическую пластину прямоугольной формы. Такие силы сжатия испытывают, например, металлические панели, ограниченные по краям стрингерами, на верхней части фюзеляжа, когда аэродинамические силы, действующие на хвостовое оперение самолета, направлены вверх.

Согласно законам механики твердого тела, критическое напряжение (т.е. нагрузка на единицу площади), при котором плоская пластина начинает коробиться, можно вычислить по формуле

где f кр – критическое напряжение, вызывающее коробление пластины, Е – модуль упругости материала, t – толщина и b – ширина пластины между опорами (в реальной конструкции это расстояние между стрингерами). Например, если панель толщиной 0,5 мм и шириной 150 мм изготовлена из алюминиевого сплава, то ее модуль упругости равен приблизительно 70 000 МПа. Подставляя эти значения в формулу (3), получим, что величина критического напряжения, при котором наступает коробление обшивки, составляет 2,8 МПа. Это значительно меньше предела текучести (280 МПа) и предела прочности (440 МПа) материала.

Материал монокока будет использоваться неэффективно, если коробление означает утрату способности пластины выдерживать нагрузку. К счастью, это не так. Испытания, проведенные Национальным институтом стандартов и технологии США, показали, что нагрузки, действующие на край панели, могут значительно превышать величину критической нагрузки, соответствующей началу коробления, поскольку нагрузка, приложенная к панели, почти полностью воспринимается полосками материала у ее краев.

Общая ширина этих полосок была названа Т.фон Карманом «эффективной шириной» пластины. Согласно его теории, предельная нагрузка, испытываемая панелью в момент ее разрушения вследствие возникновения текучести материала вблизи зажатых кромок, может быть вычислена по формуле

Здесь P – суммарная нагрузка, действующая на панель в момент разрушения, t – толщина панели, E – модуль упругости и f тек – предел текучести материала (напряжение, при котором деформация начинает увеличиваться без дальнейшего увеличения нагрузки). Расчеты по формулам (3) и (4) показывают, что критическая нагрузка, вызывающая коробление, примерно на порядок меньше предельной нагрузки, вызывающей разрушение. Этот вывод необходимо учитывать при проектировании самолета.

Использование тонких пластин в закритическом для коробления состоянии является одной из главных отличительных черт тонкостенных монококовых конструкций. Успехи в создании транспортных самолетов, бомбардировщиков и истребителей во время Второй мировой войны были бы невозможны без понимания того факта, что коробление тонкой пластины не вызывает ее разрушения. В более консервативных областях технической механики, таких, как проектирование мостов и зданий, коробление панелей не допускается. С другой стороны, тысячи самолетов летают, и при этом часть металлических пластин в их конструкциях работает в условиях коробления большую часть полетного времени. Правильно сконструированные панели, испытывающие коробление в полете, становятся абсолютно гладкими, как только самолет совершит посадку и исчезнут аэродинамические нагрузки, действующие на конструкцию в полете.

Тонкостенная балка.

Другой вид коробления относится к тонкостенной балке – важному элементу авиационных конструкций. Концепция тонкостенной балки разъясняется на рис. 10. При действии силы W на свободный конец тонкостенной балки ее верхний фланец будет подвергаться воздействию растягивающих усилий, а нижний – воздействию сжимающих усилий. Величину сил, действующих на фланцы, можно вычислить из условия статического равновесия. Срезывающее усилие, создаваемое силой W , передается по тонкой стенке балки. Такая тонкая пластина теряет устойчивость и начинает коробиться при довольно небольшой нагрузке. На ней образуются диагональные складки, т.е. конфигурация ее коробления существенно отличается от полусферических выпуклостей, появляющихся при короблении поверхности пластины вследствие ее сжатия.

Г.Вагнер разработал практический метод расчета напряжений в тонкостенной балке в условиях образования складок на стенках и доказал экспериментально, что можно спроектировать тонкостенную балку, которая не разрушается при действии полетных нагрузок, в 100 раз превышающих нагрузки, при которых начинается коробление тонкой стенки. Деформации остаются упругими, и складки исчезают полностью при снятии нагрузки.

Вследствие изгиба всей конструкции под действием нагрузки, показанной на рис. 10, верхний фланец балки растягивается, а нижний – сжимается. При появлении складок тонкая стенка работает как совокупность большого числа диагональных расчалок, которые принимают на себя срезывающие усилия подобно внешним расчалкам крыла расчалочного моноплана (рис. 1). Назначение вертикальных стоек – сохранить расстояние между фланцами балки.

В 1930-х годах концепция тонкостенной балки стала повсеместно использоваться в авиастроении при конструировании тонкостенных монококов, в частности, для лонжеронов крыла со стенками, воспринимающими срезывающие усилия.

Компоновка конструктивных элементов в тонкостенных монококах.

Идеальный тонкостенный монококовый фюзеляж состоит из тонких пластин, подкрепленных большим числом более или менее равномерно распределенных стрингеров и шпангоутов, как показано на рис. 8. Однако в самом фюзеляже приходится делать вырезы, в которых размещаются иллюминаторы и двери на пассажирских самолетах или пушечные турели и люки для бомбометания на военных самолетах. В случае больших отверстий, как, например, на тяжелых самолетах, предназначенных для перевозки полностью снаряженной гусеничной техники, или на торпедоносцах, которые несут внутри фюзеляжа большие торпеды, концентрация напряжений около вырезов становится серьезной проблемой. Часто края таких вырезов усиливают с помощью прочных лонжеронов. На некоторых самолетах в фюзеляжах приходится предусматривать столь большое число вырезов, что конструктор предпочитает использовать несущие свойства четырех главных лонжеронов и применяет короткие стрингеры только как вспомогательные силовые элементы, так как разрезанный силовой элемент не способен передавать нагрузку.

Вследствие того что нагрузки воздействуют в основном на четыре главных элемента конструкции, такой тип фюзеляжа является фактически промежуточным между каркасной конструкцией и усиленным монококом. Его можно рассматривать как частично усиленный монокок. Такие монококи чаще применяют для крыльев, чем для фюзеляжей, поскольку в крыльях самолета приходится размещать убирающиеся элементы шасси, баки с топливом, двигатели, убирающиеся закрылки, элероны, пулеметы, пушки и многочисленные второстепенные детали. Наиболее серьезные проблемы, обусловленные нарушением целостности усиленной монококовой конструкции, связаны с размещением шасси и топливных баков, потому что эти агрегаты находятся вблизи корневой части крыла, где конструкция должна быть наиболее прочной. Кроме того, на многих компоновках не допускается прохождение крыла сквозь фюзеляж, поскольку это пространство необходимо для размещения экипажа, пассажиров или двигателей. Поэтому в конструкции крыла применяют два прочных лонжерона, как это делается на моноплане с высокорасположенным крылом. Пространство между двумя лонжеронами можно использовать для размещения вышеупомянутых агрегатов и узлов. На участках крыла, не имеющих прорезей, обшивка подкрепляется стрингерами, которые способствуют дополнительному увеличению прочности крыла. Тем не менее, основную часть нагрузки берут на себя два главных лонжерона.

Чисто монококовую конструкцию имеют внешние консоли крыла (рис. 11). Нагрузки воспринимаются обшивкой и продольными силовыми элементами консоли. Различие между вертикальной стенкой и лонжероном заключается в том, что у стенки стыковочный элемент имеет ту же форму, что и остальные стрингеры, тогда как лонжерон крепится с помощью более массивных фланцев.

Концепция толстостенной монококовой конструкции.

В годы Второй мировой войны скорость опытных самолетов стала приближаться к скорости звука, и тонкостенные монококовые конструкции перестали удовлетворять возросшим требованиям. Одним из факторов, способствовавших повышению скоростей полета, явилось создание т.н. ламинарных профилей крыла, которые имели очень низкое сопротивление. Однако преимущества ламинарных крыльев могли быть реализованы только при условии точного соблюдения требуемой формы поверхности крыла, и малейшие нарушения гладкости поверхности (выступающие заклепки или углубления для потайных заклепок) сводили к нулю все преимущества ламинарного профиля. По этой причине тонкостенные усиленные монококи оказались непригодными для создания крыла с ламинарным обтеканием для высокоскоростных самолетов.

Другим фактором, требующим точного соблюдения формы крыла и фюзеляжа высокоскоростных самолетов, является неустойчивость трансзвукового потока. В трансзвуковых течениях очень небольшие изменения формы обтекаемой поверхности могут вызвать полное изменение картины обтекания и появление скачков уплотнения, которые приводят к резкому возрастанию силы сопротивления.

Поскольку выдержать точно нужную форму поверхности, изготавливаемой из тонких пластин, очень трудно, пришлось пойти на увеличение толщины обшивки авиационных конструкций. Еще одним основанием для увеличения толщины обшивки являлась недостаточная величина строительной высоты (расстояния h на рис. 6) конструкции крыла самолета. Рассчитанные на высокие скорости полета профили крыла должны быть очень тонкими (максимальная относительная толщина крыльев для сверхзвуковых самолетов и ракет обычно составляет менее 10% хорды). Нагрузки, действующие на нижнюю и верхнюю поверхности такого крыла, очень велики, и их может выдержать только толстая обшивка.

Концепция сэндвича.

Первой толстостенной конструкцией, использовавшей концепцию сэндвича (многослойной конструкции), была обшивка на истребителе «Хэвилленд Москито». В этой конструкции пространство между двумя тонкими прочными обшивками (несущими слоями) заполнено значительно более легким материалом; такая составная панель способна выдерживать более значительные изгибающие нагрузки, чем две несущие обшивки без заполнителя, соединенные вместе. Кроме того, эта многослойная конструкция остается легкой, так как заполнитель имеет небольшую плотность. В качестве примера легкой многослойной конструкции, обладающей повышенной прочностью, можно привести упаковочный картон, в котором между двумя внешними листами картона находится гофрированная бумажная прослойка. Многослойный картон обладает большей жесткостью на изгиб и прочностью, чем лист картона, соответствующий ему по весу. Важным фактором, препятствующим короблению поверхности, является способность панели выдерживать изгибающие нагрузки. Толстостенные многослойные обшивки, обладающие повышенной жесткостью на изгиб, не допускают коробления поверхности при обычных летных ситуациях и способствуют сохранению гладкой формы поверхности крыла и фюзеляжа. Несущие слои соединяются со слоем из заполнителя с помощью клея. Клепка не используется, и это обеспечивает гладкость поверхности.

Методы производства многослойных конструкций.

Для производства элементов многослойных конструкций сложной формы используют несколько методов. Один из них разъясняется на рис. 12. Изготавливают пресс-форму, точно воспроизводящую нужную форму многослойного элемента. Слои многослойной конструкции смазывают синтетическим клеем и помещают в пресс-форму. Обшивка многослойной конструкции накрывается оболочкой из герметического материала, например из прочной резины, и пресс-форма плотно закрывается крышкой. Внутрь оболочки под давлением нагнетают горячий пар, и под действием высокой температуры и равномерного давления пара клей отвердевает и надежно соединяет несущие слои с наполнителем. Такая формовочная технология может использоваться для изготовления конструктивных элементов сложной формы с искривленными стенками переменной толщины.

Во время Второй мировой войны синтетические клеи и технология склеивания слоевых конструкций нашли широкое применение в авиационной промышленности. Эта технология обеспечивала прочное соединение таких разнородных материалов, как древесина и металлы, и позволила наладить дешевое производство обшивок с гладкими поверхностями.

Разрушение многослойной конструкции.

Как и в случаях каркасных конструкций и тонкостенных монококов, разрушение многослойной конструкции начинается на той стороне, которая подвергается сжатию. Из-за большой толщины многослойной панели сжимающее усилие, вызывающее потерю устойчивости и коробление, существенно превышает то значение, при котором на поверхности тонкостенных усиленных монококов впервые появляются признаки коробления. Отношение этих величин может достигать 20 или даже 50. Следует, однако, помнить, что тонкостенные монококи могут работать при нагрузках, намного превышающих критическую нагрузку начала коробления, тогда как коробление поверхности многослойной обшивки всегда вызывает разрушение последней.

Критическую нагрузку, вызывающую потерю устойчивости многослойной обшивки, можно оценить, используя методы расчета однородных пластин и однослойных оболочек. Однако сравнительно небольшое сопротивление срезу материала легкого заполнителя заметно уменьшает величину критического напряжения, и этим эффектом нельзя пренебрегать.

Потеря устойчивости многослойной конструкции обычно приводит к короблению или образованию складок на поверхности тонких несущих оболочек. На рис. 13 показаны два вида неустойчивости: симметричное вспучивание и перекос. Симметричное вспучивание возникает в случае большой толщины слоя с заполнителем, а перекос – в случае небольшой толщины такого слоя.

Критическое напряжение, вызывающее потерю устойчивости многослойной конструкции, сопровождаемую появлением обеих форм коробления поверхности, можно определить по формуле

где f кр – критическое значение напряжения для несущих слоев, E f – модуль упругости материала несущего слоя, E c – модуль упругости материала заполнителя, G c – модуль сдвига материала заполнителя.

В качестве примера рассмотрим многослойную конструкцию с несущими слоями из алюминиевого сплава и пористым заполнителем из ацетилцеллюлозного волокна. Модуль упругости алюминиевого сплава составляет приблизительно 70 000 МПа, а для материала заполнителя он равен 28 МПа. Модуль сдвига для материала заполнителя равен 14 МПа. Подставляя эти значения в формулу (5), найдем, что критическое значение напряжения для коробления равно 150 МПа.

Отметим, что в соотношение (5) не входят геометрические характеристики панели. Следовательно, критическое напряжение не зависит от толщин несущих слоев и слоя с заполнителем. Единственной возможностью повысить несущую способность конструкции по отношению к короблению является использование заполнителя с лучшими механическими свойствами.

Другие типы толстостенных оболочек.

После Второй мировой войны были разработаны и внедрены в производство различные модификации описанной выше первоначальной многослойной конструкции. На рис. 14 показана сотовая конструкция. В ней промежуточным слоем служит сотовый (ячеистый) заполнитель. На рис. 15 показан другой тип многослойной конструкции, в которой заполнителем является гофрированный алюминий. Эта конструкция, сходная с упаковочным картоном, характеризуется высокой жесткостью и устойчивостью, однако гофрированную ленту не следует соединять с несущими оболочками при помощи заклепок.

В других конструкциях обшивка и слой, усиливающий ее жесткость, вальцуются, и им придается форма сечения крыла или фюзеляжа. Наконец, для сильно нагруженных очень тонких крыльев было налажено производство обшивок переменной толщины из прочного алюминиевого сплава с максимальными толщинами около 19 мм. Такие прочные обшивки позволяют изготовить крыло, которое сохраняет свою форму даже без нервюр только за счет жесткости самой обшивки, усиленной тремя или четырьмя опирающимися на лонжероны стенками, работающими на срез.

СВЕРХЗВУКОВЫЕ САМОЛЕТЫ,КОСМИЧЕСКИЕ ЛЕТАТЕЛЬНЫЕ АППАРАТЫ И БАЛЛИСТИЧЕСКИЕ РАКЕТЫ

Развитие авиационно-космической техники характеризуется устойчивой тенденцией роста тяговооруженности (тяговооруженностью называется отношение тяги силовой установки летательного аппарата к его весу). Для самолетов вертикального взлета и посадки эта величина превышает единицу. Двигательная установка баллистической ракеты должна создавать тягу, намного превышающую вес ракеты, чтобы поднять ее со стартового стола, ускорить и вывести на нужную траекторию.

Непрерывный рост тяговооруженности и скоростей полета привел к появлению летательных аппаратов, которые все в меньшей степени зависят от аэродинамических сил, создаваемых крылом. Размеры крыльев стали уменьшаться (на баллистических ракетах они вообще отсутствуют). Однако планирующие летательные аппараты, запускаемые в космическое пространство с помощью стартовых ускорителей, должны иметь крылья для возвращения на землю.

Крылья и стабилизаторы для сверхзвуковых летательных аппаратов меньше, чем у дозвуковых летательных аппаратов, не только по площади; они также тоньше и имеют меньшее удлинение. Крылья и поверхности хвостового оперения сверхзвуковых летательных аппаратов имеют стреловидную или треугольную форму. Толщина обшивки таких крыльев намного больше, чем у крыльев дозвуковых летательных аппаратов.

Примеры тонкостенных оболочек.

Снижение веса является первоочередной задачей проектирования космического летательного аппарата. Многие достижения в области создания тонкостенных оболочек обязаны своим происхождением этому требованию.

Типичными примерами такой конструкции являются жидкостная ракета-носитель «Атлас» и конструкция твердотопливной ракеты. Для «Атласа» была создана специальная монококовая оболочка с наддувом. Ракета с двигателем на твердом топливе получается посредством наматывания на оправку, имеющую форму твердотопливного заряда, стеклянной нити и пропитки намотанного слоя специальной смолой, которая отверждается после вулканизации. При такой технологии получается сразу и несущая оболочка летательного аппарата, и ракетный двигатель с соплом.

Были спроектированы возвращаемые космические аппараты с оболочкой конической формы, которая покрывалась слоем теплозащитного материала, подверженного абляции при высоких температурах (концепция охлаждения с помощью уносимого покрытия).

АЭРОКОСМИЧЕСКИЕ МАТЕРИАЛЫ

Многие материалы теряют свою прочность при высоких температурах, которые возникают в сверхзвуковом полете. Поэтому для аэрокосмических летательных аппаратов особый интерес представляют легкие жаропрочные материалы.

АЭРОКОСМИЧЕСКИЕ КОНСТРУКЦИИ

Транспортные самолеты и истребители.

Типичная компоновка современного транспортного самолета состоит из усиленного монококового фюзеляжа с двухлонжеронными крыльями и двухлонжеронными элементами хвостового оперения. В конструкциях самолетов используются в основном алюминиевые сплавы, однако для отдельных элементов конструкции применяются и другие материалы. Так, сильно нагруженные корневые части крыла могут быть изготовлены из титанового сплава, а рулевые поверхности – из композиционного материала с полиамидными или стеклянными нитями. В хвостовом оперении некоторых самолетов применяют графито-эпоксидные материалы. В конструкции современного самолета-истребителя воплощены самые последние достижения в области авиастроения. На рис. 16 показана конструкция типичного самолета-истребителя с многолонжеронным треугольным крылом и усиленным монококовым фюзеляжем. Отдельные элементы крыла и хвостового оперения этого самолета выполнены из композиционных материалов.

Неизведанные глубины Космоса интересовали человечество на протяжении многих веков. Исследователи и ученые всегда делали шаги к познанию созвездий и космического простора. Это были первые, но значительные достижения на то время, которые послужили дальнейшему развитию исследований в этой отрасли.

Немаловажным достижением было изобретение телескопа, с помощью которого человечеству удалось заглянуть значительно дальше в космические просторы и познакомиться с космическими объектами, которые окружают нашу планету более близко. В наше время исследования космического пространства осуществляются значительно легче, чем в те года. Наш портал сайт предлагает Вам массу интересных и увлекательных фактов о Космосе и его загадках.

Первые космические аппараты и техника

Активное исследование космического пространства началось с запуска первого искусственно созданного спутника нашей планеты. Это событие датируется 1957 годом, когда он и был запущен на орбиту Земли. Что касается первого аппарата, который появился на орбите, то он был предельно простым в своей конструкции. Этот аппарат был оснащен достаточно простым радиопередатчиком. При его создании конструкторы решили обойтись самым минимальным техническим набором. Все же первый простейший спутник послужил стартом к развитию новой эры космической техники и аппаратуры. На сегодняшний день можно сказать, что это устройство стало огромным достижением для человечества и развития многих научных отраслей исследований. Кроме того, вывод спутника на орбиту был достижением для всего мира, а не только для СССР. Это стало возможным за счет упорной работы конструкторов над созданием баллистических ракет межконтинентального действия.

Именно высокие достижения в ракетостроении дали возможность осознать конструкторам, что при снижении полезного груза ракетоносителя можно достичь очень высоких скоростей полета, которые будут превышать космическую скорость в ~7,9 км/с. Все это и дало возможность вывести первый спутник на орбиту Земли. Космические аппараты и техника являются интересными из-за того, что предлагалось много различных конструкций и концепций.

В широком понятии космическим аппаратом называют устройство, которое осуществляет транспортировку оборудования или людей к границе, где заканчивается верхняя часть земной атмосферы. Но это выход лишь в ближний Космос. При решении различных космических задач космические аппараты разделены на такие категории:

Суборбитальные;

Орбитальные или околоземные, которые передвигаются по геоцентрическим орбитам;

Межпланетные;

Напланетные.

Созданием первой ракеты для вывода спутника в Космос занимались конструкторы СССР, причем само ее создание заняло меньше времени, чем доводка и отладка всех систем. Также временной фактор повлиял на примитивную комплектацию спутника, поскольку именно СССР стремился достичь показателя первой космической скорости ее творения. Тем более что сам факт вывода ракеты за пределы планеты был более веским достижением на то время, чем количество и качество установленной аппаратуры на спутник. Вся проделанная работа увенчалась триумфом для всего человечества.

Как известно, покорение космического пространства только было начато, именно поэтому конструкторы достигали все большего в ракетостроении, что и позволило создать более совершенные космические аппараты и технику, которые помогли сделать огромный скачок в исследовании Космоса. Также дальнейшее развитие и модернизация ракет и их компонентов позволили достичь второй космической скорости и увеличить массу полезного груза на борту. За счет всего этого стал возможным первый вывод ракеты с человеком на борту в 1961 году.

Портал сайт может поведать много интересного о развитии космических аппаратов и техники за все года и во всех странах мира. Мало кому известно, что действительно космические исследования учеными были начаты еще до 1957 года. В космическое пространство первая научная аппаратура для изучения была отправлена еще в конце 40-х годов. Первые отечественные ракеты смогли поднять научную аппаратуру на высоту в 100 километров. Кроме того, это был не единичный запуск, они проводились достаточно часто, при этом максимальная высота их подъема доходила до показателя в 500 километров, а это значит, что первые представления о космическом пространстве уже были до начала космической эры. В наше время при использовании самых последних технологий те достижения могут показаться примитивными, но именно они позволили достичь того, что мы имеем на данный момент.

Созданные космические аппараты и техника требовали решения огромного количества различных задач. Самыми важными проблемами были:

  1. Выбор правильной траектории полета космического аппарата и дальнейший анализ его движения. Для осуществления данной проблемы пришлось более активно развивать небесную механику, которая становилась прикладной наукой.
  2. Космический вакуум и невесомость поставили перед учеными свои задачи. И это не только создание надежного герметичного корпуса, который мог бы выдерживать достаточно жесткие космические условия, а и разработка аппаратуры, которая могла бы выполнять свои задачи в Космосе так же эффективно, как и на Земле. Поскольку не все механизмы могли отлично работать в невесомости и вакууме так же, как и в земных условиях. Основной проблемой было исключение тепловой конвекции в герметизированных объемах, все это нарушало нормальное протекание многих процессов.

  1. Работу оборудования нарушало также тепловое излучение от Солнца. Для устранения этого влияния пришлось продумывать новые методы расчета для устройств. Также была продумана масса устройств для поддержания нормальных температурных условий внутри самого космического аппарата.
  2. Большой проблемой стало электроснабжение космических устройств. Самым оптимальным решением конструкторов стало преобразование солнечного радиационного излучения в электроэнергию.
  3. Достаточно долго пришлось решать проблему радиосвязи и управления космическими аппаратами, поскольку наземные радиолокационные устройства могли работать только на расстоянии до 20 тысяч километров, а этого недостаточно для космических пространств. Эволюция сверхдальней радиосвязи в наше время позволяет поддерживать связь с зондами и другими аппаратами на расстоянии в миллионы километров.
  4. Все же наибольшей проблемой осталась доводка аппаратуры, которой были укомплектованы космические устройства. Прежде всего, техника должна быть надежной, поскольку ремонт в Космосе, как правило, был невозможен. Также были продуманы новые пути дублирования и записи информации.

Возникшие проблемы пробудили интерес исследователей и ученых разных областей знаний. Совместное сотрудничество позволило получить положительные результаты при решении поставленных задач. В силу всего этого начала зарождаться новая область знаний, а именно космическая техника. Возникновение данного рода конструирования было отделено от авиации и других отраслей за счет его уникальности, особых знаний и навыков работы.

Непосредственно после создания и удачного запуска первого искусственного спутника Земли развитие космической техники проходило в трех основных направлениях, а именно:

  1. Проектирование и изготовление спутников Земли для выполнения различных задач. Кроме того, данная отрасль занимается модернизацией и усовершенствованием этих устройств, за счет чего появляется возможность применять их более широко.
  2. Создание аппаратов для исследования межпланетного пространства и поверхностей других планет. Как правило, данные устройства осуществляют запрограммированные задачи, также ими можно управлять дистанционно.
  3. Космическая техника прорабатывает различные модели создания космических станций, на которых можно проводить исследовательскую деятельность учеными. Эта отрасль также занимается проектированием и изготовлением пилотируемых кораблей для космического пространства.

Множество областей работы космической техники и достижения второй космической скорости позволили ученым получить доступ к более дальним космическим объектам. Именно поэтому в конце 50-х годов удалось осуществить пуск спутника в сторону Луны, кроме того, техника того времени уже позволяла отправлять исследовательские спутники к ближайшим планетам возле Земли. Так, первые аппараты, которые были посланы на изучение Луны, позволили человечеству впервые узнать о параметрах космического пространства и увидеть обратную сторону Луны. Все же космическая техника начала космической эры была еще несовершенная и неуправляемая, и после отделения от ракетоносителя главная часть вращалась достаточно хаотически вокруг центра своей массы. Неуправляемое вращение не позволяло ученым производить много исследований, что, в свою очередь, стимулировало конструкторов к созданию более совершенных космических аппаратов и техники.

Именно разработка управляемых аппаратов позволила ученым провести еще больше исследований и узнать больше о космическом пространстве и его свойствах. Также контролируемый и стабильный полет спутников и других автоматических устройств, запущенных в Космос, позволяет более точно и качественно передавать информацию на Землю за счет ориентации антенн. За счет контролируемого управления можно осуществлять необходимые маневры.

В начале 60-х годов активно проводились пуски спутников к самым близким планетам. Эти запуски позволили более подробно ознакомиться с условиями на соседних планетах. Но все же самым большим успехом этого времени для всего человечества нашей планеты является полет Ю.А. Гагарина. После достижений СССР в строении космической аппаратуры большинство стран мира также обратили особое внимание на ракетостроение и создание собственной космической техники. Все же СССР являлся лидером в данной отрасли, поскольку ему первому удалось создать аппарат, который осуществил мягкое прилунение. После первых успешных посадок на Луне и других планетах была поставлена задача для более детального исследования поверхностей космических тел с помощью автоматических устройств для изучения поверхностей и передачи на Землю фото и видео.

Первые космические аппараты, как говорилось выше, были неуправляемыми и не могли вернуться на Землю. При создании управляемых устройств конструкторы столкнулись с проблемой безопасного приземления устройств и экипажа. Поскольку очень быстрое вхождение устройства в атмосферу Земли могло просто сжечь его от высокой температуры при трении. Кроме того, при возвращении устройства должны были безопасно приземляться и приводняться в самых различных условиях.

Дальнейшее развитие космической техники позволило изготовлять орбитальные станции, которые можно использовать на протяжении многих лет, при этом менять состав исследователей на борту. Первым орбитальным аппаратом данного типа стала советская станция «Салют». Ее создание стало очередным огромным скачком человечества в познании космических пространств и явлений.

Выше указана очень маленькая часть всех событий и достижений при создании и использовании космических аппаратов и техники, которая была создана в мире для изучения Космоса. Но все же самым знаменательным стал 1957 год, с которого и началась эпоха активного ракетостроения и изучения Космоса. Именно запуск первого зонда породил взрывоподобное развитие космической техники во всем мире. А это стало возможным за счет создания в СССР ракетоносителя нового поколения, который и смог поднять зонд на высоту орбиты Земли.

Чтобы узнать обо всем этом и многом другом, наш портал сайт предлагает Вашему вниманию массу увлекательных статей, видеозаписей и фотографий космической техники и объектов.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама